1.

Evaluate `int_(0)^(pi//2)(x)/((sinx+cosx))dx`.

Answer» Let `I=int_(0)^(pi//2)(x)/((sinx+cosx))dx`……..`(i)`
Then, `I=int_(0)^(pi//2)(((pi)/(2)-x))/(sin[(pi//2)-x]+cos[(pi//2)-x])dx`
or `I=(((pi)/(2)-x))/((cosx+sinx))dx=int_(0)^(pi//2)(((pi)/(2)-x))/((sinx+cosx))dx`.......`(ii)`
Adding `(i)` and `(ii)`, we get
`2I=(pi)/(2)int_(0)^(pi//2)(dx)/((sinx+cosx))`
`:.I=(pi)/(4)int_(0)^(pi//2)(dx)/((sinx+cosx))=(pi)/(4)int_(0)^(pi//2)(dx)/([(2tan(x//2))/(1+tan^(2)(x//2))+(1-tam^(2)(x//2))/(1+tan^(2)(x//2))])`
`=(pi)/(4)int_(0)^(pi//2)(sec^(2)(x//2))/(1-tan^(2)(x//2)+2tan(x//2))dx`
`=(pi)/(4)int_(0)^(1)(2dt)/((1-t^(2)+2t))`, where `t=tan.(x)/(2)`
[`x=0impliest=0` and `x=(pi)/(2)impliest=1`]
`=(pi)/(2)int_(0)^(1)(dt)/([(sqrt(2))^(2)-(t-1)^(2)])dt`
`=(pi)/(2)*(1)/(2sqrt(2))log|(sqrt(2)+(t-1))/(sqrt(2)-(t-1))|_(0)^(1)=(pi)/(4sqrt(2))log|(sqrt(2)+1)/(sqrt(2)-1)|`.


Discussion

No Comment Found