1.

Evaluate `int_(0)^(pi)(x)/((1+sinx))dx`.

Answer» Let `I=int_(0)^(pi)(x)/((1+sinx))dx`…..`(i)`
Then, `I=int_(0)^(pi)((pi-x))/(1+xsin(pi-x))dx=int_(0)^(pi)((pi-x))/((1+sinx))dx`…….`(ii)`
Adding `(i)` and `(ii)`, we get
`2I=pi int_(0)^(pi)(dx)/((1+sinx))=pi*int_(0)^(pi)(1)/((1+sinx))xx((1-sinx))/((1-sinx))dx`
or `2I=pi int_(0)^(pi)((1-sinx)/(cos^(2)x))dx=pi*[int_(0)^(pi)sec^(2)xdx-int_(0)^(pi)secxtanxdx]`
`=pi*{[tanx]_(0)^(pi)-[secx]_(0)^(pi)}=2pi`
`:.I=pi`, i.e, `int_(0)^(pi)(x)/((1+sinx))dx=pi`.


Discussion

No Comment Found