1.

Evaluate `int_(0)^(pi)(xsinx)/((1+cos^(2)x))dx`.

Answer» Let `I=int_(0)^(pi)(xsinx)/((1+cos^(2)x))dx`…….`(i)`
Then, `I=int_(0)^(pi)((pi-x)sin(pi-x))/(1+cos^(2)(pi-x))dx`
or, `I=int_(0)^(pi)((pi-x)sinx)/((1+cos^(2)x))dx`……`(ii)`
Adding `(i)` and `(ii)` , we get
`2I=pi int_(0)^(pi)(sinx)/((1+cos^(2)x))dx=-piint_(1)^(-1)(dt)/((1+t^(2)))`, were `cosx=t`
`=pi int_(-1)^(1)(dt)/((1+t^(2)))=pi[tan^(-1)t]_(-1)^(1)`
`=pi[tan^(-1)-tan^(-1)]=pi[(pi)/(4)-(-(pi)/(4))]=(pi^(2))/(2)`.
`:.I=(pi^(2))/(4)`.


Discussion

No Comment Found