1.

Evaluate:`int_1^2 1/((x+1)(x+2))dx`(ii) `int_1^2 1/(x(1+x^2))dx`

Answer» Let `(1)/(x(1+x^(2)))=(A)/(x)+(Bx+C)/((1+x^(2)))`.
Then, `1-=A(1+x^(2))+(Bx+C)x`. Putting `x=0`, we get `A=1`.
Comparing the coefficients of `x^(2)`, we get `A+B=0` or `B=-1`.
Comparing coefficients f `x`, we get `C=0`.
`:.(1)/(x(1+x^(2)))=[(1)/(x)-(x)/(1+x^(2))]`
So, `int_(1)^(2)(dx)/(x(1+x^(2)))=int_(1)^(2)(dx)/(x)-(1)/(2)int_(1)^(2)(2x)/(1+x^(2))dx`
`=[logx]_(1)^(2)-(1)/(2)[log(1+x^(2))]_(1)^(2)`
`=[(3)/(2)(log2)-(1)/(2)(log5)]`.


Discussion

No Comment Found