1.

Evaluate int (e^x+x^e) dx from 1 to 0I'll mark your answer brainliest, please answer fast​

Answer»

ANSWER:

\\\tt 1 - e - \dfrac{1}{e+1}

EXPLANATION:

\\\tt \int _1 ^0  (e^x + x^e) dx \\ \\\tt =   \int _1 ^0 e^x dx + \int _1 ^0 x^edx \\ \\\tt = [e^x]_1^0 +  [\dfrac{x^{e+1}}{e+1} ]_1^0 \\ \\\tt  =  (1-e )  + (\dfrac{0^{(e+1)}}{e+1}  - \dfrac{1^{(e+1)}}{e+1} )\\ \\\tt = 1 - e - \dfrac{1}{e+1}

FORMULAS USED:

\\\tt \int_a^b e^x dx =  [e^x]_a^b = e^b -e^a\\ \\\\\tt  \int_a^b x^y dx = [\dfrac{x^{y+1}}{y+1} ]_a^b =  (\dfrac{b^{y+1}}{y+1} )-  (\dfrac{a^{y+1}}{y+1} )



Discussion

No Comment Found

Related InterviewSolutions