1.

Evaluate `lim_(xrarr0)((1-cosxsqrt(cos2x)))/(x^(2)).`

Answer» `lim_(xto0)((1-cosxsqrt(coss)))/(x^(2))`
`=lim_(xto0){((1-cosxsqrt(cos2x)))/(x^(2))xx((1+cosxsqrt(cos2x)))/((1+cosxsqrt(cos2x)))}`
`=lim{((1-cos^(2)xcos2x))/(x^(2))xx(1)/((1+cosxsqrt(cos2x)))}`
`=lim_(xto0)((1-cos^(2)xcos2x))/(x^(2))xxlim_(xto0)(1)/((1+cosxsqrt(cos2x)))`
`lim_(xto0){(1-cos^(2)x(1-2sin^(2)x))/(x^(2))xx(1)/((1+1sqrt1))`
`((1-cos^(2)x+2sin^(2)xcos^(2)x))/(x^(2))xx1/2`
`=1/2xxlim_(xto0)((sin^(2)x+2sin^(2)xcos^(2)x))/(x^(2))xx1/2xxlim_(xto0)(sin^(2)(1+2cos^(2)x))/(x^(2))`
`=1/2xxlim_(xto0)((sinx)/(x))^(2)xxlim_(xto0)(1+2cos^(2)x)`
`1/2xx1^(2)xx(1+2xx1^(2))=3/2.`


Discussion

No Comment Found