1.

Evaluate ∫ tan5xsec3xdx

Answer»

∫ tan5xsec3xdx

In this integral we will use the formula,

1+ tan2x = sec2

Then equation will be transform in below form-

I = ∫tan5x sec2x secx dx 

= ∫secx tan5x sec2x dx 

Now,

Put tan x = t which means sec2xdx = dt,

I = \(\int t^5.\sqrt{1+t^2}\) dt

In this above integral, 

Put 1+t= k2 that is mean tdt = kdk 

I = ∫(k4 + 1- 2k) k2 dk 

= ∫ (k6 + k2 – 2k3)dk

\(\frac{k^7}{7}\)\(\frac{k^3}{3}\)\(\frac{k^4}{2}\)

Now, 

Put the value of k = (1+t2) = sec2x in above equation-

I = \(\frac{sec^{14}x}{7}\)\(\frac{sec^{6}x}{3}\)-\(\frac{sec^{8}x}{2}\)



Discussion

No Comment Found