1.

Examine the continuity of the funciton `f(x)=sinx - cos x, " for "x ne 0` `=-1" ,for "x =0` at the point x = 0

Answer» `" L.H.L."=underset(xrarr0^(-))(lim)f(x)`
`=underset(xrarr0^(-))(lim)(sinx - cosx)`
`=0-1`
`=-1`
`" R.H.L."=underset(xrarr0^(+))(lim)f(x)`
`=underset(xrarr0^(+))(lim)(sinx-cosx)`
`=-1`
`underset(xrarr0)(lim)f(x)=-1" (Given)"`
`"L.H.L. = R.H.L. "=underset(xrarr0)f(x)`
So, function is continuous at x = 0.
Hence proved.


Discussion

No Comment Found