 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Examine the continuity of the funciton `f(x)=sinx - cos x, " for "x ne 0` `=-1" ,for "x =0` at the point x = 0 | 
| Answer» `" L.H.L."=underset(xrarr0^(-))(lim)f(x)` `=underset(xrarr0^(-))(lim)(sinx - cosx)` `=0-1` `=-1` `" R.H.L."=underset(xrarr0^(+))(lim)f(x)` `=underset(xrarr0^(+))(lim)(sinx-cosx)` `=-1` `underset(xrarr0)(lim)f(x)=-1" (Given)"` `"L.H.L. = R.H.L. "=underset(xrarr0)f(x)` So, function is continuous at x = 0. Hence proved. | |