InterviewSolution
Saved Bookmarks
| 1. |
Express the following equations in matrix form and solve them by the method of reduction : `x+y+z=6,3x-y+3z=6and5x+5y-4z=3`. |
|
Answer» Matrix form of the given equations is `[{:(1,1,1),(3,-1,3),(5,5,-1):}][{:(x),(y),(z):}]=[{:(6),(6),(3):}]` Applying `R_(2)toR_(2)-3R_(1)andR_(3)toR_(3)-5R_(1)` `[{:(1,1,1),(0,-4,0),(0,0,-9):}][{:(x),(y),(z):}]=[{:(6),(-12),(-27):}]` `[{:(x+,y+,z),(,-4y,),(,-9z,):}]=[{:(6),(-12),(-27):}]` `:.` We get, `x+y+z=6" "......(i)` `-4y=-12" "......(ii)` `-9z=-27" "......(iii)` From equation (ii), we get y =3 From equation (iii), we get z=3. Substituting y=3 and z=3 in equation (i), we get x =0. `:.x=0,y=3` and z=3 is the required solution. |
|