1.

Figure shows a sector of a circle, centre O, containing an angle `theta`. Prove that (i) Perimeter of the shaded region is `r ( tan theta + sec theta + (pi theta)/180 -1)` (ii) Area of shaded region is `r^2/2 ( tan theta - pi theta/180)`

Answer» `tantheta=(AB)/r`
`AB=rtantheta`
`sectheta=(OB)/(OA)=(OB)/r`
`OB=rsectheta`
`PB=OB-OP=rsectheta-r`
`arcAB=pirtheta/180^o`
Perimeter=`rtantheta+rsectheta-r+(pirtheta)/180^0`
`=r(tantheta+sectheta+pitheta/180^o-1)`
Area of `/_OAB=1/2*r^2tantheta`
Area of shaded region=`1/2r^2tantheta-pir^2theta/360`
`=r^2/2(tantheta-pitheta/180^0)`


Discussion

No Comment Found

Related InterviewSolutions