Saved Bookmarks
| 1. |
Find dimension of length if f force v velocity and t is time |
|
Answer» Let M = (some NUMBER) (V) a (F) (T) c
EQUATING dimensions of both the sides M 1 L 0 T 0 =(1)[L 1 T −1 ] a [M 1 L 1 T −2 ] b [T 1 ] c
M 1 L 0 T 0 =M b L a+b T −a−2b+c
get a = - 1, b = 1, c = 1 M = (Some Number) (V −1 F 1 T 1 )⇒[M]=[V −1 F 1 T 1 ] Similarly, we can also express energy in terms of V, F, T Let [E] = [some Number] [V] a [F] b [T] c
⇒[ML 2 T −2 ]=[M 0 L 0 T 0 ][LT −1 ] a [MLT −2 ] b [T] c
[M 1 L 2 T −2 ]=[M b L a+b T −a−2b+c ] ⇒ 1 = b; 2 = a + b ; -2 = -a - 2b + c get a = 1 ; b = 1 ; c = 1 ∴ E = (some Number) V 1 F 1 T 1 or[E]=[V 1 ][F 1 ][T |
|