InterviewSolution
Saved Bookmarks
| 1. |
Find `lim_(xrarr0) f(x)` and `underset(xrarr1)f(x)`. `f(x)={{:(2x+3,xle0),(3(x+1),xgt0):}` |
|
Answer» `f(x)={{:(2x+3,xle0),(3(x+1),xgt0):}` at x=0 LHL`=underset(xrarr0^(-))"lim"f(x)` `=underset(hrarr0)"lim"f(0-h)` Let `0-h=x ` `rArr0-hrarr0` `rArr hrarr0` `underset(hrarr0)"lim"2(0-h)+3=2(0)+3=3` RHL`=underset(xrarr0^(+))f(x)` `=underset(hrarr0)"lim"f(0+h)` `=underset(hrarr0)"lim"3(0+h+1)` `=3(0+1)=3` `because LHL=RHL=3` ` therefore underset(xrarr0)"lim"f(x)=3` at x=1 LHL`=underset(xrarr1^(1-))"lim"f(x)` `=underset(hrarr0)"lim"f(1-h)` `=underset(hrarr0)"lim"3(1-h+1)` `=3(2-0) =6` RHL`=underset(xrarr1^(+))"lim"f(x)` `=underset(hrarr0)"lim"f(1+h)` `=underset(hrarr0)"lim"3(1+h+1)` `=3(2+0)=6` `because LHL=RHL=6` `therefore underset(xrarr1)"lim"f(x)=6` Let `1+h=x` `rArr1+hrarr1` `rArr hrarr0` |
|