1.

If `y=(log)_(sinx)(tanx),t h e n(((dy)/(dx)))_(pi/4)"is equal to"`(a)`4/(log2)`(b) `-4log2`(c)`(-4)/(log2)`(d) none of these

Answer» `y=ln(tanx)/ln(sinx)`
`dy/dx=(lnsinx xx sec^(2)x/tanx - lntanx xx cosx/sinx)/((lnsinx)^2)`
`dy/dx at x=pi/4=``(ln1/sqrt2xx 2-0)/(ln(1/sqrt2)^2`=`-4/lnsqrt2`


Discussion

No Comment Found