InterviewSolution
Saved Bookmarks
| 1. |
`lim_(y to 0) ((x+y)sec(x+y)-xsecx)/(y)` |
|
Answer» Given, `underset(yto0)"lim"((x+y)sec(x+y)-xsecx)/(y)` `=underset(yto0)"lim"((x+y)/(cos(x+y))-x/(cosx))/(y)` `=underset(yto0)"lim"[(xcosx+ycosx(x+y)+ycosx)/(ycosxcos(x+y))]` `=underset(yto0)"lim"[(xcosx-xcos(x+y)+ycosx)/(ycosxcos(x+y)]]` `=underset(yto0)"lim"(x[-2sin(x+y/2)sin(-y/2)]+ycosx)/(ycosxcos(x+y))` `[therefore cosC-cosD=-2sin(C+D)/(2).sin(C-D)/(2)]` `=underset(yto0)"lim"[[(x{2sin(x+y/2)siny/2}+ycosx))/(ycosxcos(x+y)]]` `=underset(yto0)"lim"(2xsin(x+y/2))/(cosxcos(x+y)).underset(yto0)"lim"(siny/2)/(y/2).1/2+underset(hto0)"lim"cos(x+h)` `therefore underset(hto0)"lim"(sinx)/(x)=1` and `xto0 rArr kx to0]` `=underset(yto0)"lim"(2xsin(x+y/2))/(cosxcos(x+y)).1/2+underset(yto0)"lim"sec(x+y)` `(2xsinx)/(cosxcosx).1/2+secx` `xtanxsecx+secx` `=secx(xtanx+1)` |
|