1.

Find real q such that `(3+2isintheta)/(1-2isintheta)`is purelyreal.

Answer» We have
`((3+2i sin theta)/(1-2i sin theta))=((3+2i sin theta))/((1-2i sin theta))xx((1+2i sin theta))/((1+2i sin theta))`
`=((3+2i sin theta)(1+2i sin theta))/((1-4i^(2) sin^(2)theta))`
`=((3-4sin^(2)theta)+i(6sin theta+2sin theta))/((1+4 sin^(2)theta))`
`=((3-4sin^(2)theta)+i(8sin theta))/((1+4 sin^(2)theta))`
Now, `((3+2i sin theta)/(1-2i sin theta))` will be purely real only when `(8 sin theta)/((1+4sin^(2) theta))=0`.
This happens only when `8 sin theta = 0 iff sin theta = 0 iff theta = n pi, n in N`.
Hence, the required value of `theta` is `n pi`, where n `in` N.


Discussion

No Comment Found