1.

Find real `theta` such that `(3+2isintheta)/(1-2isintheta)`is purely real.

Answer» `(3+2isintheta)/(1-2isintheta) = (3+2isintheta)/(1-2isintheta)**(1+2isintheta)/(1+2isintheta)`
`=((3+2isintheta)(1+2isintheta))/(1-4i^2sin^2theta))`
`=(3+6isintheta+2isintheta+4i^2sin^2theta)/(1+4sin^2theta)`
`=(3-4sin^2theta)/(1+4sin^2theta)+(8sintheta)/(1+4sin^2theta)i`
For this number to be real, imaginary part should be `0`.
So, `(8sintheta)/(1+4sin^2theta) =0`
`=>sintheta =0=>theta = npi`
So, when `theta = npi`, given number will be real.


Discussion

No Comment Found