InterviewSolution
Saved Bookmarks
| 1. |
Find the 50th term of the series `2+3+6+11+18+…`. |
|
Answer» Let `S_(n)=2+3+6+11+18+...+T_(n-1)+T_(n)`. Again `S_(n)=2+3+6+11+...+T_(n-1)+T_(n)`. On substracting, we get `0=2+[1+3+5+7+... "to"(n-1)"terms"]-T_(n)` `rArr T_(n)=2+[1+3+5+7+... "to"(n-1)"terms"]` `=2+((n-1))/(2)*[2xx1+(n-2)xx2]=(n-1)^(2)+2.` `rArr T_(50)={(50-1)^(2)+2}={(49)^(2)+2}=(2401+2)=2403.` |
|