1.

Find the 50th term of the series `2+3+6+11+18+…`.

Answer» Let `S_(n)=2+3+6+11+18+...+T_(n-1)+T_(n)`.
Again `S_(n)=2+3+6+11+...+T_(n-1)+T_(n)`.
On substracting, we get
`0=2+[1+3+5+7+... "to"(n-1)"terms"]-T_(n)`
`rArr T_(n)=2+[1+3+5+7+... "to"(n-1)"terms"]`
`=2+((n-1))/(2)*[2xx1+(n-2)xx2]=(n-1)^(2)+2.`
`rArr T_(50)={(50-1)^(2)+2}={(49)^(2)+2}=(2401+2)=2403.`


Discussion

No Comment Found