InterviewSolution
| 1. |
Find the adjoint of the Matrices.\(\begin{bmatrix}1&tan\frac{a}{2}\\-tan\frac{a}{2}&1\end{bmatrix}\)Verify that (adj A) A=|A| I=A (adj A) for the above matrices. |
|
Answer» A = \(\begin{bmatrix}1&tan\frac{\alpha}{2}\\-tan\frac{\alpha}{2}&1\end{bmatrix}\) Cofactors of A are C11 = 1 C12 = \(tan\frac{\alpha}{2}\) C21 = \(-tan\frac{\alpha}{2}\) C22 = 1 Since, adj A =\(\begin{bmatrix}C_{11}&C_{12}\\C_{21}&C_{22}\end{bmatrix}^T\) (adj A) =\(\begin{bmatrix}1&tan\frac{\alpha}{2}\\-tan\frac{\alpha}{2}&1\end{bmatrix}^T\) \(=\begin{bmatrix}1&tan\frac{\alpha}{2}\\-tan\frac{\alpha}{2}&1\end{bmatrix}\) Now, (adj A)A = \(\begin{bmatrix}1&-tan\frac{\alpha}{2}\\tan\frac{\alpha}{2}&1\end{bmatrix}\)\(\begin{bmatrix}1&tan\frac{\alpha}{2}\\-tan\frac{\alpha}{2}&1\end{bmatrix}\) \(=\begin{bmatrix}1+tan^2\frac{\alpha}{2}&tan\frac{\alpha}{2}-tan\frac{\alpha}{2}\\tan\frac{\alpha}{2}-tan\frac{\alpha}{2}&1+tan^2\frac{\alpha}{2}\end{bmatrix}\) (adj A)A =\(\begin{bmatrix}1+tan^2\frac{\alpha}{2}&0\\0&1+tan^2\frac{\alpha}{2}\end{bmatrix}\) And, |A|.I =\(\begin{bmatrix}1&tan\frac{\alpha}{2}\\-tan\frac{\alpha}{2}&1\end{bmatrix}\)\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)\(=(1+tan^2\frac{\alpha}{2})\)\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\) \(=\begin{bmatrix}1+tan^2\frac{\alpha}{2}&0\\0&1+tan^2\frac{\alpha}{2}\end{bmatrix}\) Also, A(adj A) =\(\begin{bmatrix}1&tan\frac{\alpha}{2}\\-tan\frac{\alpha}{2}&1\end{bmatrix}\)\(\begin{bmatrix}1&-tan\frac{\alpha}{2}\\tan\frac{\alpha}{2}&1\end{bmatrix}\)\(=\begin{bmatrix}1+tan^2\frac{\alpha}{2}&tan\frac{\alpha}{2}-tan\frac{\alpha}{2}\\tan\frac{\alpha}{2}-tan\frac{\alpha}{2}&1+tan^2\frac{\alpha}{2}\end{bmatrix}\) \(=\begin{bmatrix}1+tan^2\frac{\alpha}{2}&0\\0&1+tan^2\frac{\alpha}{2}\end{bmatrix}\) Hence, (adj A)A = |A|.I = A.(adj A) |
|