InterviewSolution
| 1. |
Find the adjoint of the Matrices.\(\begin{bmatrix}a&b\\c&d\end{bmatrix}\)Verify that (adj A) A=|A| I=A (adj A) for the above matrices. |
|
Answer» A = \(\begin{bmatrix} a&b \\ c&d \end{bmatrix}\) Cofactors of A are C11 = d C12 = – c C21 = – b C22 = a Since, adj A =\(\begin{bmatrix}C_{11}&C_{12}\\C_{21}&C_{22}\end{bmatrix}^T\) (adj A) = \(\begin{bmatrix}d&-c\\-b&a\end{bmatrix}^T\) \(=\begin{bmatrix}d&-b\\-c&a\end{bmatrix}\) Now, (adj A)A \(=\begin{bmatrix}d&-b\\-c&a\end{bmatrix}\)\(\begin{bmatrix} a&b \\ c&d \end{bmatrix}\)\(=\begin{bmatrix}ad&-bc&bd&-bd\\-ac&+ac&-bc&+ad\end{bmatrix}\) (adj A)A =\(\begin{bmatrix}ad&-bc&0\\0&ad&-bc\end{bmatrix}\) And, |A|.I =\(\begin{bmatrix} a&b \\ c&d \end{bmatrix}\)\(\begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix}\) = (ad - bc)\(\begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix}\)= \(\begin{bmatrix}ad&-bc&0\\0&ad&-bc\end{bmatrix}\) Also, A(adj A) = \(\begin{bmatrix} a&b \\ c&d \end{bmatrix}\)\(\begin{bmatrix}d&-b\\-c&a\end{bmatrix}\)\(=\begin{bmatrix}ad&-bc&bd&-bd\\-ac&+ac&-bc&+ad\end{bmatrix}\) Hence, (adj A)A = |A|.I = A.(adj A) |
|