InterviewSolution
| 1. |
Find the adjoint of the Matrices.\(\begin{bmatrix}-3&5\\2&4\end{bmatrix}\)Verify that (adj A) A=|A| I=A (adj A) for the above matrices. |
|
Answer» A = \(\begin{bmatrix}-3&5\\2&4\end{bmatrix}\) Cofactors of A are C11 = 4 C12 = – 2 C21 = – 5 C22 = – 3 Since, adj A = \(\begin{bmatrix}C_{11}&C_{12}\\2_{21}&C_{22}\end{bmatrix}^T\) (adj A) = \(\begin{bmatrix}4&-2\\-5&-3\end{bmatrix}^T\) \(=\begin{bmatrix}4&-5\\-2&-3\end{bmatrix}^T\) Now, (adj A)A \(=\begin{bmatrix}4&-5\\-2&-3\end{bmatrix}\)\(\begin{bmatrix}-3&5\\2&4\end{bmatrix}\)\(=\begin{bmatrix}-12&-10&20&-20\\6&-6&-10&-12\end{bmatrix}\) (adj A)A \(=\begin{bmatrix}-22&0\\0&-22\end{bmatrix}\) And, |A|.I =\(\begin{bmatrix}-3&5\\2&4\end{bmatrix}\)\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)=(-22)\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)\(=\begin{bmatrix}-22&0\\0&-22\end{bmatrix}\) Also, A(adj A) = \(\begin{bmatrix}-3&5\\2&4\end{bmatrix}\)\(\begin{bmatrix}4&-5\\-2&-3\end{bmatrix}\)\(=\begin{bmatrix}-12&-10&20&-20\\6&-6&-10&-12\end{bmatrix}\) A(adj A) \(=\begin{bmatrix}-22&0\\0&-22\end{bmatrix}\) Hence, (adj A)A = |A|.I = A.(adj A) |
|