InterviewSolution
Saved Bookmarks
| 1. |
Find the approximatevalue of `(log)_(10)1005`, given that `(log)_(10)e=0. 4343` |
|
Answer» Here, we will use the following rule, `f(x+Deltax) = f(x) + f'(x)Deltax` Here, `f(x+Deltax) = log_10 1005, f(x) = log_10 x, x = 1000, Deltax = 5` `:. log_10(x+Deltax) = log_10 x+d/dx(log_10x)Deltax` `:. log(x+Deltax) = log_10x+d/dx(log_e x/log_e 10)Deltax` `=>log_10(1005) = log_10 (1000)+1/(log_e 10)(1/x)(5)` `= 3+log_10 e(1/1000)**5``=3+0.4343**1/1000**5` `=3+0.0021` `=3.0021` `:. log_10(1005) = 3.0021` |
|