1.

Find the area of a parallelogram ABCD if three of its vertices are A(2, 4), B (2 + \(\sqrt3\) , 5) and C(2, 6).

Answer»

It is given that A(2, 4), B(2 + \(\sqrt3\), 5) and C(2, 6) are the vertices of the parallelogram ABCD. 

Area of the triangle having vertices (x1,y1), (x2,y2) and (x3,y3

\(\frac{1}2\) |x1(y2-y3)+x2(y3-y1)+x3(y1-y2)| 

Area of □ABCD = 2 × Area of ∆ABC 

Area of ∆ABC = \(\frac{1}2\) |2(5 - 6)+ (2 + \(\sqrt3\))(6 - 4)+2(4 - 5)| 

\(\frac{1}2\) |-2 + 4 + 2\(\sqrt3\) - 2| 

\(\frac{1}2\) × 2\(\sqrt3\)\(\sqrt3\) sq. units 

∴ Area of □ABCD = 2 × \(\sqrt3\) = 2\(\sqrt3\) sq. units 

Hence, 

the area of given parallelogram is 2\(\sqrt3\) sq. units



Discussion

No Comment Found

Related InterviewSolutions