InterviewSolution
Saved Bookmarks
| 1. |
Find the complex number z for which |z| = z + 1 + 2i. |
|
Answer» Correct Answer - `((2)/(2)-2i)` Let the required complex number be z = (x + iy). Then, |z| = z + 1 + 2i `rArr" "|x+iy|=(x+iy)+1+2i` `rArr" "sqrt(x^(2)+y^(2))=(x+1)+(y+2)i` `rArr" "sqrt(x^(2)+y^(2))=(x+1) and y + 2 = 0` `rArr" "y = -2 and sqrt(x^(2)+(-2)^(2))=(x+1)` `rArr" "y = -2 and x^(2) + 4 = (x + 1)^(2) rArr x = (3)/(2) and y = -2`. |
|