

InterviewSolution
1. |
Find the coordinates of the circumcentre of the triangle whose vertices are (3, 0), (-1, - 6) and (4,-1). Also, find its circumradius. |
Answer» Coordinates of points on a circle are A (3, 0), B(-1, - 6) and C(4,-1) Let the coordinates of the centre of the circle be O(x, y) Using distance formula = \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\) Since the distance of the points A, B and C will be equal from the center, therefore ⇒ OA = OC \(\sqrt{(x - 3)^2 + (y - 0)^2}\) = \(\sqrt{(x + 1)^2 + (y + 6)^2}\) On squaring both sides, we get (x - 3)2 + (y - 0)2 = (x + 1)2 + (y + 6)2 ⇒ x2 + 9 - 6x + y2 = x2 + 2x +1 + y2 + 36 + 12y ⇒ - 8x - 12y = 28 ⇒ 2x + 3y = -7------------- (1) Similarly, OC = OB \(\sqrt{(x - 4)^2 + (y + 1)^2}\) = \(\sqrt{(x + 1)^2 + (y + 6)^2}\) On squaring both sides, we get (x - 4)2 + (y + 1)2 = (x + 1)2 + (y + 6)2 ⇒ x2 + 16 - 8x + y2 + 1 + 2y = x2 + 1 +2x + y2 + 36 + 12y ⇒ - 10x - 10y = 20 ⇒ x + y = - 2 ------------- (2) Solving eqn (1) and (2), we get x = 1; y = - 3 Coordinates of circum center are (1, - 3) Circum radius of the circle = OA = \(\sqrt{(1 - 3)^2 + (3)^2}\) = \(\sqrt{4 +13}\) = \(\sqrt{13}\) units |
|