1.

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse `(x^(2))/(4)+(y^(2))/(25)=1`

Answer» `(x^(2))/(4)+(y^(2))/(25)=1`
Comparing with `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1`
`:.a^(2)=4andb^(2)=25" "rArr" "a=2andb=5`
Here, `altb`.
`:.` The major axis of the ellipse will be along y-axis
Vertices `-=(0,pmb)-=(0,pm5)`
Eccentricity `e=sqrt(1-(a^(2))/(b^(2)))`
`=sqrt(1-(4)/(25))=sqrt((21)/(25))=(sqrt(21))/(5)`
Coordinates of foci `-=(0,pmbe)`
`-=(0,pmxx(sqrt(21))/(5))-=(0,pmsqrt(21))`
Major axis `=2b=2xx5=10`
Minor axis `=2a=2xx2=4`
Length of latus rectum `=(2a^(2))/(b)=(2xx4)/(5)=(8)/(5)`.


Discussion

No Comment Found

Related InterviewSolutions