InterviewSolution
Saved Bookmarks
| 1. |
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse `(x^(2))/(4)+(y^(2))/(25)=1` |
|
Answer» `(x^(2))/(4)+(y^(2))/(25)=1` Comparing with `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` `:.a^(2)=4andb^(2)=25" "rArr" "a=2andb=5` Here, `altb`. `:.` The major axis of the ellipse will be along y-axis Vertices `-=(0,pmb)-=(0,pm5)` Eccentricity `e=sqrt(1-(a^(2))/(b^(2)))` `=sqrt(1-(4)/(25))=sqrt((21)/(25))=(sqrt(21))/(5)` Coordinates of foci `-=(0,pmbe)` `-=(0,pmxx(sqrt(21))/(5))-=(0,pmsqrt(21))` Major axis `=2b=2xx5=10` Minor axis `=2a=2xx2=4` Length of latus rectum `=(2a^(2))/(b)=(2xx4)/(5)=(8)/(5)`. |
|