InterviewSolution
Saved Bookmarks
| 1. |
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse `(x^(2))/(100)+(y^(2))/(400)=1` |
|
Answer» `(x^(2))/(100)+(y^(2))/(400)=1` Comparing with `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` `:.a^(2)=100" "rArr" "a=10` `b^(2)=400" "rArr" "b=20` Here, `altb`. `:.` the major axis of the ellipse wil be along y-axis. Vertices `-=(0,pmb)-=(0,pm20)` Eccentricity `e=sqrt(1-(a^(2))/(b^(2)))=sqrt(1-(100)/(400))=sqrt((3)/(4))=(sqrt(3))/(2)` Now, be `=20xx(sqrt(3))/(2)xx10sqrt(3)` `:. "Coordinates of foci" -=(0,pmbe)-=(0,pm10sqrt(3))` Major axis `=2b=2xx20=40` Minor axis `=2a=2xx10=20` Length of latus rectum `=(2a^(2))/(b)=(2xx100)/(20)=10` |
|