InterviewSolution
Saved Bookmarks
| 1. |
Find the coordinates of the foci, the vertices, the eccentricity and the length of the latus rectum of the Hyperbola `9y^(2)-4x^(2)=36` |
|
Answer» Equation of hyperbola `9y^(2)-4x^(2)=36` `rArr(y^(2))/(4)-(x^(2))/(9)=1` Here, the transverse axis is along y-axis. Comparing with `(y^(2))/(b^(2))-(x^(2))/(a^(2))=1` `b^(2)=4," "a^(2)=9` `rArr" "b=2," "a=3` Now, vertices `-=(0,pmb)-=(0,pm2)` Eccentricity `e=sqrt(1+(a^(2))/(b^(2)))=sqrt(1+(9)/(4))` `=sqrt((13)/(4))=(sqrt(13))/(2)` Now, be `=2xx(sqrt(13))/(2)sqrt(13)` `:.` Coordinates of foci `-=(0,pmbe)-=(0,pmsqrt(13))` Length of latus rectum `=(2a^(2))/(b)=(2xx9)/(2)=9` |
|