

InterviewSolution
Saved Bookmarks
1. |
Find the differential equation of the family of curves `y=A e^(2x)+B e^(-2x)`, where A and B are arbitrary constants. |
Answer» `y=A tan^(-1)(B tan""(x)/(2)),` `"where "A=(2)/(sqrt(a^(2)-b^(2))),B=sqrt((a-b)/(a+b))` `Ab=(2)/(sqrt((a-b)(a+b)))sqrt((a-b)/(a+b))=(2)/(a+b)` `(dy)/(dx)=(ABsec^(2)""(x)/(2)xx(1)/(2))/(1+B^(2)tan^(2)""(x)/(2))` `=(1)/(a+b).(a+b)/((a+b)cos^(2)""(x)/(2)+(a-b)sin^(2)""(x)/(2))` `=(1)/(a+b cos x)" (1)"` `therefore" " (d^(2)y)/(dx^(2))=(b sin x)/((a+b cos x)^(2))` |
|