InterviewSolution
Saved Bookmarks
| 1. |
Find the equation of Hyperbola satisfying the following conditions: Foci `(0,pmsqrt(10))`, passing through (2,3). |
|
Answer» Let equation of hyperbola is `(y^(2))/(b^(2))-(x^(2))/(a^(2))=1` . . . (1) `(because` foci lie on y-axis) Coordinates of foci `=(0,pmsqrt(10))` `rArr" "be=sqrt(10)` `rArr" "b^(2)e^(2)=10` `rArra^(2)+b^(2)=10` . . .(2) Hyperbola passes through the point (2,3). Therefore from equation (1) `(9)/(b^(2))-(4)/(a^(2))=1` `(9)/(b^(2))-(4)/(10-b^(2))=1` [From equation (2)] `rArr(90-9b^(2)-ab^(2))/(b^(2)(10-b^(2)))` `rArr""90-13b^(2)=10b^(2)-b^(4)` `rArr""b^(4)-23b^(2)+90=0` `(b^(2)-5)(b^(2)-18)=0` `rArr""b^(2)=5orb^(2)=18` From equation (2) `b^(2)=5rArra^(2)=5` `b^(2)=18rArra^(2)=-8` which is not possible `:." "b^(2)=a^(2)=5` and equation of hyperbola `(y^(2))/(5)-(x^(2))/(5)=1rArry^(2)-x^(2)=5` |
|