InterviewSolution
Saved Bookmarks
| 1. |
Find the equation of Hyperbola satisfying the following conditions: Foci `(pm4,0)`, the latus rectum is of length 12. |
|
Answer» Foci `(pm4,0)`, lie on x-axis. `:." "ae=4rArra^(2)e^(2)=16` . . . (1) and latus rectum `=(2b^(2))/(a)=12` `rArr" "b^(2)=6a` . . .(2) `rArra^(2)(e^(2)-1)=6a` `rArra^(2)e^(2)-a^(2)=6a` `rArr" "16-a^(2)=6a` [From equation (1)] `rArr" "a^(2)+6a-16=0` `rArr" "(a+8)(a-2)=0` `rArr" "a=-8ora=2` But a cannot be negative. `:.a=2rArra^(2)=4` From equation (2) `b^(2)=6xx2=12` Now, equation of hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1rArr(x^(2))/(4)-(y^(2))/(12)=1` |
|