InterviewSolution
Saved Bookmarks
| 1. |
Find the equation of the ellipse whose vertices are `(+-13 ,0)`and foci are `(+-5,0)`. |
|
Answer» The vertices and foci of the ellipse are on x-axis, therefore let the equation of ellipse be `(x^(2))/(a^(2))+(y^(2))/(b^(2))=1` where `agtb` Now given that, vertices `=(pma,0)=(pm13,0)` a=13 and `foci=(pmae,0)=(pm5,0)` `rArr" "ae=5` `rArr" "13e=5` `rArr" "e=(5)/(13)` Now `b^(2)=a^(2)(1-e^(2))` `=169(1-(25)/(169))=144` `:.` Equation of ellipse `(x^(2))/(169)+(y^(2))/(144)=1`. |
|