InterviewSolution
Saved Bookmarks
| 1. |
Find the equations of the hyperbola satisfying the given conditions :Foci `(0,+-13)`, the conjugate axis is of length 24. |
|
Answer» Here, foci `(0,pm13)` lie on y-axis `:." "be=13rArrb^(2)e^(2)=169` and conjugate axis 2a=24 `:." "a=12rArra^(2)=144` Now, `a^(2)=b^(2)(e^(2)-1)` `rArr" "a^(2)=b^(2)e^(2)-b^(2)` `rArr" "144=169-b^(2)` `rArr" "b^(2)=25` `:.` Equation of hyperbola `(y^(2))/(b^(2))-(x^(2))/(a^(2))=1rArr(y^(2))/(25)-(x^(2))/(144)=1` |
|