1.

Find the general solution of the differential equation ex dy - yex dx = e3x  dx .

Answer»

exdy - yexdx = e3xdx

⇒ exdy = (e3x + yex)dx

⇒ ex dy  = ex(e2x + y)dx

⇒ \(\frac{dy}{dx} \) = y + e2x

⇒ \(\frac{dy}{dx} \) - y = e2x

\(\therefore\) P = -1 and Q = e2x

\(\therefore\) I. F. = \(e^{\int pdx}=e^{\int-1dx}=e^{-x}\)

\(\therefore\) Complete solution is y x I. F. = \(\int\)(I.F.) x Q dx

⇒ y .e-x = \(\int\)e-x.e2xdx = \(\int\)exdx = ex + c

⇒ y = e2x+ cex



Discussion

No Comment Found