InterviewSolution
Saved Bookmarks
| 1. |
Find the general solution of the differential equation ex dy - yex dx = e3x dx . |
|
Answer» exdy - yexdx = e3xdx ⇒ exdy = (e3x + yex)dx ⇒ ex dy = ex(e2x + y)dx ⇒ \(\frac{dy}{dx} \) = y + e2x ⇒ \(\frac{dy}{dx} \) - y = e2x \(\therefore\) P = -1 and Q = e2x \(\therefore\) I. F. = \(e^{\int pdx}=e^{\int-1dx}=e^{-x}\) \(\therefore\) Complete solution is y x I. F. = \(\int\)(I.F.) x Q dx ⇒ y .e-x = \(\int\)e-x.e2xdx = \(\int\)exdx = ex + c ⇒ y = e2x+ cex |
|