1.

Find the minimum value of (asec2 θ + bcosec2 θ).1). (a + b)2). (a + b) + 2√ab3). 2√ab4). 1

Answer»

The given FUNCTION can be written as?

a(1 + tan2 θ) + b(1 + cot2 θ)

= a + b + atan2 θ + bcot2 θ

= (a + b) + (atan2 θ + bcot2 θ)

Now, formula for FINDING min value of (atan2 θ + bcot2 θ) = 2√ab

∴ Minimum value of the given expression = (a + b) + 2√ab


Discussion

No Comment Found