InterviewSolution
Saved Bookmarks
| 1. |
Find the number of solutions of the equation tan x + sec x = 2 cos x, x∈ [0, π]. |
|
Answer» tan x + sec x = 2 cos x ⇒ \(\frac{sin\,x}{cos\,x}\) + \(\frac{1}{cos\,x}\) = 2 cos x ⇒ 1 + sin x = 2 cos2 x ⇒ 1 + sin x = 2 (1 – sin2 x) = 2 – 2 sin2 x ⇒ 2 sin2 x + sin x – 1 = 0 ⇒ (sin x + 2) (2 sin x – 1) = 0 ⇒ (sin x + 2) = 0 or 2 sin x = 1 ⇒ sin x = –2 or sin x = \(\frac{1}{2}\) Since sin x = – 2 is inadmissible, therefore, sin x = \(\frac{1}{2}\) ⇒ x = 30°, 150°, i.e. x = \(\frac{π}{6}\) ,\(\frac{5π}{6}\). ∴ The number of solutions x ∈[0, π] are 2. |
|