1.

Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line x - √3y + 4 = 0.

Answer»

Given: 

Line x - √3y + 4 = 0 

To find: 

The perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line x - √3y + 4 = 0 .

Concept Used: 

Distance of a point from a line. 

Explanation: 

The equation of the line perpendicular to x - √3y + 4 = 0 is x - √3y + λ = 0 This line passes through (1,2)

∴  \(\sqrt{-3}\)  + 2 + λ = 0

⇒ λ = \(\sqrt{-3}\) - 2

Substituting the value of λ, we get \(\sqrt{3}x+y-\sqrt{3}-2=0\) 

Let d be the perpendicular distance from the origin to the line  \(\sqrt{3}x+y-\sqrt{3}-2=0\)  

d = \(\frac{0-0-\sqrt{3}-2}{\sqrt{1+3}}=\frac{\sqrt{3}+2}{2}\) 

Hence, the required perpendicular distance is \(\frac{\sqrt{3}+2}{2}\) 



Discussion

No Comment Found