1.

Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on x and y-axes such that a – b = 2

Answer»

Concept Used:

The equation of the line with intercepts a and b is  \(\frac{x}{a}+\frac{y}{b}=1\) 

Given: 

Here, a – b = 2 

⇒ a = b + 2 ……(i) 

Explanation: 

The line is passing through (3,2). 

\(∴\frac{3}{a}+\frac{2}{b}\)…(ii) 

From equation (i) and (ii)

\(\frac{3}{b+2}+\frac{2}{b}=1\)

⇒ 3b + 2b + 4 = b2 + 2b 

⇒ b2 – 3b – 4 = 0 

⇒ (b – 4)(b + 1) = 0

⇒ b = 4, -1 

Now, from equation (i) 

For b = 4, a = 4 + 2 = 6 

For b = -1, b = -1 + 2 = 1 

Thus the equation of line is 

   \(\frac{x}{1}+\frac{y}{-1}=1\) or   \(\frac{x}{6}+\frac{y}{4}=1\)

⇒x – y = 1 or 2x + 3y = 12



Discussion

No Comment Found