 
                 
                InterviewSolution
 Saved Bookmarks
    				| 1. | Find the radius of curvature for the curve x3 + y3 = 3axy on the point (3a/2, 3a/2). | 
| Answer» According to question x3 + y3 = 3axy Thus at point (\(\frac{3a}{2}\), \(\frac{3a}{2}\)) Putting the coordinates in the equation \(\frac{27a^3}{8}\) + \(\frac{27a^3}{8}\) = \(\frac{54a^3}{4}\) \(\frac{27a^3 + 27a^3}{8}\) = \(\frac{54a^3}{4}\) \(\frac{54a^3}{8}\) = \(\frac{54a^3}{4}\) Thus a = \(\frac{1}{2}\) Thus the coordinates are (\(\frac{1}{2}\), \(\frac{1}{2}\)).Radius of curvatur=-3a/8√2 | |