

InterviewSolution
Saved Bookmarks
1. |
Find the range of `f(x)=sqrt(x-1)+sqrt(5-xdot)` |
Answer» Correct Answer - `x^(2) - 4abx - (a^(2) - b^(2))^(2) = 0` ` (alpha + beta)^(2) = (alpha + beta)^(2)` and `(alpha - beta)^(2) = (alpha + beta) ^(2) - 4alpha beta ` ` (a + b )^(2) - 4 ((a^(2) + b^(2))/(2))` ` 2 ab - (a^(2) + b^(2))` 2 ab - (a^(2) + b^(2))` = - (a - b)^(2)` Now , the required equation whose roots are ` (alpha + beta)^(2) and (alpha - beta )^(2)` is `x^(2) - {(alpha + beta)^(2) + (alpha + beta)^(2)} x + (alpha + beta)^(2) (alpha - beta)^(2) = 0` or `x^(2) - {(a +b)^(2) - (a- b)^(2)} x - (a + b)^(2) (a-b)^(2) = 0` or ` x^(2) - 4 abx - (a^(2) - b^(2))^(2) = 0` . |
|