

InterviewSolution
Saved Bookmarks
1. |
Find the roots of following quadratic equations by using quadratic formula, if they exist. (i)2x^(2)+x-4=0 (ii) 2x^(2)+x+4=0 (iii) 2x^(2)+5sqrt3x+6=0 (iv) sqrt3x^(2)+11x+6sqrt3=0 |
Answer» Solution :(i) GIVEN equation is `2x^(2)+x-4=0` ) On comparing with `ax^(2)+bx+c=0`, we get a=2,b=1 and c=-4 `:. "DISCRIMINAT", D=b^(2)-4ac` `impliesD=(1)^(2)-4xx2xx(-4)` `impliesD=1+32` `impliesD=33gt0` Hence, the given equation has two real roots. `:.x=(-b+-sqrtD)/(2a)` `impliesx=(-1+-sqrt33)/(4)` `impliesx=(-1+sqrt33)/(4),(-1-sqrt33)/(4)` are roots of to the equation. (ii) Give equation is `2x^(2)+x+4=0` On comparing with `ax^(2)+bx+c=0`, we get a=2, b=1 and c=4 `:."Discriminant",D=b^(2)-4ac` `impliesD=(1)^(2)-4xx2xx4` `impliesD=1-32` `impliesD=-31lt0` Hence, the equation has no real roots. (iii) Given equation is `2x^(2)+5sqrt3x+6=0` On comparing with `ax^(2)+bx+c=0`, we get `a=2,b=5sqrt3andc=6` `:."Discriminant"D=b^(2)-4ac` `impliesD=(5sqrt3)^(2)-4xx2xx6` `impliesD=75-48` `impliesD=27gt0` Hence, the equation has two real roots. `:.x=(-b+-sqrtD)/(2a)` `impliesx=(-5sqrt3+-sqrt27)/(4)impliesx=(-5sqrt3+-3sqrt3)/(4)` `impliesx=(-2sqrt3)/(2)and(-8sqrt3)/(4)` `impliesx=(-sqrt3)/(2)and-2sqrt3` are roots of the equation. (IV) Given equation is `sqrt3x^(2)+11x+6sqrt3=0` On comparing with `ax^(2)+bx+c=0` we get `a=sqrt3,b=11andc=6sqrt3` `:."Discriminant"D=b^(2)-4ac` `impliesD=11^(2)-4xxsqrt3xx6sqrt3` `impliesD=121-72` `impliesD=49gt0` Hence, the given equation has two real roots. `:.x=(-b+-sqrtD)/(2a)` `impliesx=(-11+-sqrt49)/(2sqrt3)impliesx=(-11+-7)/(2sqrt3)` `impliesx=(-11+7)/(2sqrt3)and(-11-7)/(2sqrt3)` `impliesx=(-4)/(2sqrt3)xx(sqrt3)/(sqrt3)and(-18)/(2sqrt3)xx(sqrt3)/(sqrt3)` `impliesx=(-4sqrt3)/(6)and(-18sqrt3)/(6)` `impliesx=(-2sqrt3)/(3)and-3sqrt3` are roots of the equation. |
|