InterviewSolution
Saved Bookmarks
| 1. |
Find the roots of the following quadratic equations, if they exist by the method of completing the square. (i) 2x^(2)-7x+3=0 (ii) 4x^(2)+4sqrt3x+3=0 |
|
Answer» Solution :Given equation is `2x^(2)-7x+3=0` DIVIDING both sides by 2 `X^(2)-(7)/(2)x+(3)/(2)=0` ADDING `(("COEFFICIENT of x")/(2))^(2)"""on both sides,i.e.,"((7)/(2)xx(1)/(2))^(2)=(49)/(16)` `x^(2)-(7)/(2)x+(49)/(16)=(-3)/(2)+(49)/(16)` `implies(x-(7)/(4))^(2)=((5)/(4))^(2)` `:.x-(7)/(4)+-(5)/(4)""(why?)` `impliesx=(7)/(4)+-(5)/(4)=(7+-5)/(4)` `impliesx=(12)/(4),(2)/(4)` `impliesx=3,(1)/(2)` Hence, roots of the equation are `(1)/(2)` and 3. (II) Given equation is `4x^(2)+4sqrt3x+3=0` Dividing both sides by 4 `impliesx^(2)+sqrt3x+(3)/(4)=0` `impliesx^(2)+sqrt3x=(3)/(4)` Adding `(("coefficient of x")/(2))^(2)i.e.,((sqrt3)/(2))=(3)/(4)"on both sides"` `x^(2)+sqrt3x+(3)/(4)=(-3)/(4)+(3)/(4)` `implies(x+(sqrt3)/(2))^(2)=0` `:.(x+(sqrt3)/(2))=0and((x+(sqrt3)/(2)=0` `impliesx=(-sqrt3)/(2)andx=(-sqrt3)/(2)` Hence, roots of the equation are `(-sqrt3)/(2)andx=(-sqrt3)/(2)` |
|