1.

Find the second term and nth term of an A.P. whose 6th term is 12 and 8th term is 22.

Answer»

Given : 

6th term of an A.P is 12 and 8th terms of an A.P. is 22 

⇒ a6 = 12 and a8 = 22 

We know, 

an = a + (n – 1)d 

where a is first term or a1 and d is common difference and n is any natural number 

When n = 6 : 

∴ a6 = a + (6 – 1)d 

⇒ a6 = a + 5d 

Similarly, 

When n = 8 : 

∴ a8 = a + (8 – 1)d 

⇒ a8 = a + 7d 

According to question : 

a6 = 12 and a8 = 22 

⇒ a + 5d = 12 ………………(i) 

And a + 7d = 22…………..(ii) 

Subtracting equation (i) from (ii) : 

a + 7d – (a + 5d) = 22 – 12 

⇒ a + 7d – a – 5d = 10 

⇒ 2d = 10

⇒ d = \(\frac{10}{2}\)

⇒ d = 5

Put the value of d in equation (i) : 

a + 5(5) = 12 

⇒ a + 25 = 12 

⇒ a = 12 – 25 

⇒ a = -13 

As, 

an = a + (n – 1)d 

a2 = a + (2 – 1)d 

⇒ a2 = a + d 

Now,

Put the value of a = 9 and d = 2 in an and a2 

⇒ an = a + (n – 1)d 

⇒ an = -13 + (n – 1)5 

⇒ an = -13 + 5n – 5 

⇒ an = -18 + 5n 

a2 = a + d 

⇒ a2 = -13 + 5 

⇒ a2 = -8 

Hence, 

2th term and nth of the given A.P. are -8 and 5n – 18 respectively.



Discussion

No Comment Found