

InterviewSolution
Saved Bookmarks
1. |
Find the set of values of `alpha` in the interval [ `pi/2,3pi/2`], for which the point (`sin alpha, cos alpha`)does not exist outside the parabola `2 y^2 + x - 2 = 0` |
Answer» `2y^2+x-2=0` `f(x,y)=2y^2+x-2` `f(0,0)=0+0-2<0` `f(h,k)=2k^2+h-2<=0` `2cos^alpha+sinalpha-2<=0` `2-2sin^2alpha+sinalpha-2<=0` `sinalpha(2sinalpha-1)>=0` `alpha in [pi/2,5/6pi]uu[pi,3/2pi]`. |
|