1.

Find the sum of first `n`terms of the following series:`5+11+19+29+41+ dot`

Answer» Let `S_(n)=5+11+19+29+...+T_(n-1)+T_(n)`
`S_(n)=5+11+19+...+T_(n-2)+T_(n-1)+T_(n)`
On substraction, we get
`0=5+[6+8+10+12= ..." to "(n-1)" terms"]-T_(n)`
`rArr T_(n)=5+((n-1)xx[2xx6+(n-2)xx2])/(2)`
`rArr T_(n)=5+(n-1)(n+4)`
`rArr T_(n)=n^(2)+3n+1.`
`therefore S_(n) =sum_(k=1)^(n)T_(k)=sum_(k=1)^(n)(k^(2)+3k+1)=sum_(k=1)^(n)k^(2)+3sum_(k=1)^(n)k+n`
`=(1)/(6)n(n+1)(2n+1)+3xx(1)/(2)n(n+1)+n`
`=(1)/(3)n(n+2)(n+4).`


Discussion

No Comment Found