1.

Find the sum of series`(3^3=2^3)+(5^3=4^3)+(7^3=6^3)+`to `n`terms

Answer» We have
`T_(k)={(2k+1)^(3)-(2k)^(3)}`
`={8k^(3)+1+6k(2k+1)-8k^(3)}=(12k^(2)+6k+1).`
(i) sum to n terms is given by
`S_(n) =12 sum_(k=1)^(n)k^(2)+6sum_(k=1)^(n)k+n`
`=12xx(1)/(6)n(n+1)(2n+1)+6xx(1)/(2)n(n+1)+n`
`=2n(n+1)(2n+1)+3n(n+1)+n`
`=n(n+1)[4n+2+3]+n=n[(n+1)(4n+5)+1]`
`=n(4n^(2)+9n+6)=(4n^(3)+9n^(2)+6n).`
(ii) Sum to 10 terms is given by
`S_(10) =10 xx[4 xx10^(2)+9xx10+6]=4960.`


Discussion

No Comment Found