1.

Find the total number of solutions of the equation sin4 x + cos4 x = sin x cos x in [0, 2π].

Answer»

Given

sin4 x + cos4 x = sin x cos x

⇒ (sin2 x + cos2 x) 2 – 2 sin2 x cos2 x = sin x cos x 

⇒ 1 - \(\frac{(2\,sinx\,cosx)^2}{2}\) = \(\frac{2\,sinx\,cosx}{2}\)

⇒ 1 – \(\frac{{sin}^2\,2x}{2}\) = \(\frac{sin\,2x}{2}\)

⇒ sin2 2x + sin 2x – 2 = 0 

⇒ (sin 2x + 2) (sin 2x – 1) = 0 

⇒ sin 2x = 1

⇒ sin 2x = sin \(\frac{\pi}{2}\) = sin \(\big(\) 2π + \(\frac{\pi}{2}\) \(\big)\) ( ∵ sin 2x ≠ – 2 is indivisible)

⇒ 2x = \(\frac{\pi}{2}\) or  \(\big(\) 2π + \(\frac{\pi}{2}\) \(\big)\) 

⇒ 2x = \(\frac{\pi}{2}\) or \(\frac{5\pi}{2}\) 

⇒ x = \(\frac{\pi}{4}\) or \(\frac{5\pi}{4}\)



Discussion

No Comment Found