InterviewSolution
Saved Bookmarks
| 1. |
Find the total number of solutions of the equation sin4 x + cos4 x = sin x cos x in [0, 2π]. |
|
Answer» Given sin4 x + cos4 x = sin x cos x ⇒ (sin2 x + cos2 x) 2 – 2 sin2 x cos2 x = sin x cos x ⇒ 1 - \(\frac{(2\,sinx\,cosx)^2}{2}\) = \(\frac{2\,sinx\,cosx}{2}\) ⇒ 1 – \(\frac{{sin}^2\,2x}{2}\) = \(\frac{sin\,2x}{2}\) ⇒ sin2 2x + sin 2x – 2 = 0 ⇒ (sin 2x + 2) (sin 2x – 1) = 0 ⇒ sin 2x = 1 ⇒ sin 2x = sin \(\frac{\pi}{2}\) = sin \(\big(\) 2π + \(\frac{\pi}{2}\) \(\big)\) ( ∵ sin 2x ≠ – 2 is indivisible) ⇒ 2x = \(\frac{\pi}{2}\) or \(\big(\) 2π + \(\frac{\pi}{2}\) \(\big)\) ⇒ 2x = \(\frac{\pi}{2}\) or \(\frac{5\pi}{2}\) ⇒ x = \(\frac{\pi}{4}\) or \(\frac{5\pi}{4}\) |
|