1.

Find the transpose of A=\(\begin{bmatrix}1&-2\\-1&5\end{bmatrix}\).(a) A=\(\begin{bmatrix}-1&-2\\-1&-5\end{bmatrix}\)(b) A=\(\begin{bmatrix}1&2\\1&5\end{bmatrix}\)(c) A=\(\begin{bmatrix}-1&2\\-1&5\end{bmatrix}\)(d) A=\(\begin{bmatrix}1&-1\\-2&5\end{bmatrix}\)I have been asked this question during a job interview.My question comes from Transpose of a Matrix in division Matrices of Mathematics – Class 12

Answer»

Correct OPTION is (d) A=\(\begin{bmatrix}1&-1\\-2&5\end{bmatrix}\)

The explanation: A=\(\begin{bmatrix}1&-2\\-1&5\end{bmatrix}\). To find the transpose of the MATRIX, interchange the ROWS with COLUMNS and columns with rows.

Hence, A’=\(\begin{bmatrix}1&-1\\-2&5\end{bmatrix}\).



Discussion

No Comment Found

Related InterviewSolutions