1.

Find the value `underset(n rarr oo)("lim") underset(k =2)overset(n)sum cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))`

Answer» `cos^-1((1+sqrt(k(k-1)(k+1)(k+2)))/(k(k+1)))`
`=cos^-1((1+sqrt(k(k^2-1)(k+2)))/(k(k+1)))`
`=cos^-1(1/(k(k+1))+sqrt(1-1/k^2)sqrt(1-1/(k+1)^2))`
`=cos^-1 (1/(k+1)) - cos^-1(1/k)`
`:. sum_(k=2)^n cos^-1 (1/(k+1) - 1/k) = cos^-1(1/3) - cos^-1(1/2) +cos^-1(1/4) - cos^-1(1/3)+cos^-1(1/5) - cos^-1(1/4)+...+cos^-1 (1/(n+1)) - cos^-1(1/n)`
`=cos^-1 (1/(n+1)) - cos^-1(1/2)`
`:. Lim_(n->oo) sum_(k=2)^n cos^-1 (1/(k+1) - 1/k) = Lim_(n->oo) cos^-1 (1/(n+1)) - cos^-1(1/2) `
`=cos^-1(0) - pi/3`
`=pi/2-pi/3 = pi/6`
`:. Lim_(n->oo) sum_(k=2)^n cos^-1((1+sqrt(k(k-1)(k+1)(k+2)))/(k(k+1))) =pi/6.`


Discussion

No Comment Found