1.

Find the values of a and b so that the function `f(x)={{:(x+asqrt2 sin x", "0 le x le pi//4),(2x cot x + b", "pi//4 le x le pi//2),(a cot 2x - b sin x", "pi//2 lt x le pi):}` is continuous for ` 0 le x le pi`.

Answer» Correct Answer - `a=pi/6, b = (-pi)/12`
Since, f(x) is continuous for ` 0 le x le pi`
`:." " RHL("at" x = pi/4)= LHL ("at" x = pi/4)`
` rArr" " ( 2* pi/4 cot. Pi/4 + b) = (pi/4 + asqrt2 * sin. Pi/4) `
`rArr" " pi/2 + b = pi/4 + a rArr a - b = pi/4` .....(i)
Also, RHL ` ("at" x = pi/2) = LHL ("at" x = pi/2)`
` rArr (a cot (2pi)/2 - b sin. pi/2) = ( 2* pi/2* cot. pi/2 + b) `
`rArr" " -a-b=b`
`rArr" " a+ 2b = 0` ....(ii)
On solving Eqs. (i) and (ii) , we get
` a = pi/6 and b =- pi/12 `


Discussion

No Comment Found