

InterviewSolution
Saved Bookmarks
1. |
Find the values of `m`for which the expression `2x^2+m x y+3y^2-5y-2`can be resolved into two rational linear factors. |
Answer» We know that `ax^(2) + 2hxy + by^(2) + 2gx + 2fy + c` can be resolved into two linear factors if and only if ` abc + 2fgh - af^(2) - bg^(2) -ch^(2) = 0` Given expression is `2x^(2) + mxy + 3y^(2) - 5y - 2` Here, `a = 2, h = m//2` , `b = 3 ,g = 0` , `f = - 5//2,` `c = -2` Therefore, expression `2x^(2) + mxy + 3y^(2) - 5y - 2` will have two linear factors if and only if or `2xx3(-2) + 2 ((-5)/(2))(0) ((m)/(2))-2 ((-5)/(2))^(2) - 3 xx0^(2) - (-2)((m)/(2))^(2) =0` or `-12 - (25)/(2) + (m^2)/(2) =0` or ` m^(2) = 49` or ` m = pm 7` |
|